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Abstract

This work proposes a range spread-F (RSF) prediction model using the neural network (NN) over the equatorial

Chumphon (CPN) region in Thailand. The RSF model is constructed by using five input spaces including the diurnal

variation, seasonal variation, geographic latitude, solar flux index (F10.7), and magnetic index (Ap). The RSF NN

model is trained with three years of RSF data during 2013 to 2015 from Chumphon (CPN) station (Latitude = 10.7◦N ,

Longitude = 99.4◦E) and the performance of the proposed RSF NN model is validated using the dataset of 2016. As a

result, the RSF NN model achieves 98.3% accuracy of all correct predictions even with the limited available data. The

results show that the proposed NN model yields a lower RSF probability than the actual observation by about 7.3%,

but the overestimation of the proposed NN model is 2.5% in both the equinoxes and solstices. In addition, we discover

that the IRI-2016 model mostly overestimates the RSF probability when compared with the actual observation for all

seasons in 2016, particularly, in equinoctial months over Chumphon station.

Keywords: Ionospheric Irregularity; Equatorial Spread-F; Spread-F Prediction Model; Neural Network; IRI-2016

model

1. Introduction

The nighttime irregularity of the equatorial ionosphere is a major issue that degrades the high frequency radio

wave propagation. Such irregularity at the bottomside ionosphere is often displayed as the equatorial spread-F (ESF).

The spread out of the equatorial F layer was first studied by Booker & Wells (1938) who discovered the scattering

of F layer trace in the ionograms at nighttime near the magnetic equator. The spreading of the F layer along the

frequency band and height range is due to the reflection of scattered signals from the irregularity of ionospheric electron

densities and the spread sizes of the plasma irregularities vary from a few centimeters to hundreds of kilometers Basu

et al. (1978). Rungraengwajiake et al. (2013) found out that the percentage of RSF occurrences is higher in low

latitudinal region (Chumphon station: CPN) than in the mid latitudinal region (Chiangmai station: CMU) over

Thailand sector and the onset of RSF is observed at CPN station before the station at conjugate points. Hence, it

confirms that the onset of RSF/plasma bubble initiates from equatorial region and afterward extend to the higher

latitudes (equatorial to northern) in Thailand sector. The study of Klinngam et al. (2015) analyzes ESF occurrence

statistics during equinoctial months from 2006 to 2013 over the three conjugate stations in Southeast Asia; the RSF

occurrence at Chumphon station is higher than those at Chiangmai station and Kototabang station, specifically, the
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most observed RSF occurrences are noticed within 5% to 85% in the equinoctial months. The previous works analyze

the characteristics of RSF occurrence in low latitudinal areas are more predominant than the high latitudinal areas. Its

effects are a major issue to degrade the quality level of communication systems such as the reduction in the performance

of high frequency (HF) communication systems and the Global Navigation Positioning System (GNSS).

The plasma instability is caused by the uplifting of bottom side F-region plasma gradient and the action of the

Rayleigh-Taylor (R-T) gravitation instability processes. The ESF/plasma bubble is driven by the evening pre-reversal

enhancement (PRE) that causes the sudden uplift of equatorial F layer and the ESF occurrences lead to instability

growth at the bottomside of the F-region so called the plasma bubble event Abdu (2001); Abdu et al. (2009). Hoang

et al. (2010) proposes the statistical results of RSF occurrence over the two equatorial sites at Ho Chi Minh City (HCM)

in Vietnam and Sao Luis (SL) in Brazil; one interesting result is the ESF occurrence rate at SL station is higher than

HCM station during post-midnight in December and July months, in addition, the height of F layer over HCM station

is lower than those over SL station. Pezzopane et al. (2013) presents the study of ESF phenomenon during equinoctial

months in 2009 over American longitude sector including Palmas (PAL) and São José Dos Campos (SJC) in Brazil,

Tucumán (TUC), Argentina and in Asian longitude sector composes of Chiangmai (CGM), Thailand, and Tanjungsari

(TNJ), Indonesia. The observed ESF results in American sites are higher than those observed ESF occurrence rate at

CGM and TNJ sites in the Asian longitude sector, moreover, this study confirms the fact of RSF occurrence at TUC,

anticipated by satellite trace (ST) appearance, it is most probably related to gravity waves propagating through the

F-region rather than the equatorial process. The previous studies indicate that the occurrence and development of

ESF event depend on the several factors such as LSWS, PRE and PSSR. The study of Abdu et al. (2015) shows that

the post-sunset development of spread F/plasma bubble is due to the amplification of the large-scale wave structure

(LSWS) at the bottomside of equatorial ionospheric F-layer and also, the vertical/zonal perturbation winds is a

common feature in the equatorial region for producing the form of F layer height oscillations. These two causes lead to

development of spread-F/plasma bubble during the post-sunset. Huang (2018) proposes the pre-reversal enhancement

(PRE) of the post-sunset vertical plasma drift is a significant factor in controlling the generation of ESF and the

100% of ESF occurrence probability can be actually observed when the PRE is large enough. The post-sunset rise

(PSSR) of equatorial F layer is replaced by the upwelling growth for controlling the development of equatorial plasma

bubble/spread-F during the low solar activity Tsunoda et al. (2018). However, the mechanism of ESF occurrences are

not well understood, especially on the day-to-day variability.

Since the equatorial spread-F degrades quality of communication systems, it is reasonable in attempting to prevent

this problem and develop a prediction model. One of well-known empirical models is the International Reference

Ionosphere (IRI) model which has been continually updated; the current model is the IRI-2016 model https://ccmc.

gsfc.nasa.gov/modelweb/models/iri2016_vitmo.php. Abdu et al. (2003) first develops the prediction model for

the spread-F occurrence probability using the 13 years of spread-F data (1978 - 1990) over the equatorial site Fortaleza

and low latitude site Cochoeira in Brazilian sectors; the model uses the method of Cubic-B spline interpolation. This

model is being used as an optional parameter of the IRI model. Neural networks have been recently utilized to forecast

bottomside ionosphere and spread-F events. Oyeyemi et al. (2005) proposes a prediction model for foF2 value using

the neural network, which is trained with a large dataset from 59 ionospheric stations from 1964 to 1986. They

indicate that the results of proposed NN2 model yield the better results than the Comité Consultatif International
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des Rediocommunications (CCIR) model on average by a margin of 15 - 16%. Oyeyemi et al. (2006) suggests the

improvement in the foF2 prediction model in that geophysical information and the recent-past observations of foF2

from several control stations which could be utilized as inputs of the NN for predicting the foF2 in a near-real time

fashion. The NN is utilized to develop the prediction model of M(3000)F2, the designed network model consists of

two hidden layers that contain 20 neurons and the response is compared with IRI model (CCIR M(3000)F2 model)

Oyeyemi et al. (2007). McKinnell & Oyeyemi (2010) proposes the new NN based global model for the foF2 parameter

concentrating on the ability of predicting the foF2 in the equatorial sector, this model uses the data from 135 global

ionospheric stations including a number of equatorial stations. Equatorial stations are identified as problematic within

the current IRI prediction, hence, this new model is considered as a suitable replacement for the International Union

of Radio Science (URSI) and International Radio Consultative Committee (CCIR) model which are currently used

within the IRI model with the objective of predicting the F2 peak electron density. Watthanasangmechai et al. (2012)

proposes the prediction of Total Electron Content (TEC) utilizing the NN over equatorial station so called CPN station

in Thailand. It is trained with the global positioning system (GPS) available data during the low solar activity from

2005 to 2009 and the training algorithm of network model is a back propagation algorithm. The three input spaces

such as the day number, hour number, and sunspot number are used. The proposed model can predict the GPS total

electron content (TEC) quite well over equatorial latitude station, even with the limited amount of available data.

In 2019, Zhao et al. (2019) optimizes the NN based model of predicting the foF2 value using the Genetic Algorithm

(GA) during disturbance time in China. GA is used to improve the initial weights to escape the local minimum during

the training. The training data covers 13 years from 1995 to 2004. The prediction of the proposed model is more

accurate in 1 hour ahead of prediction and furthermore, the prediction accuracy is better at middle latitude than low

latitude. Importantly, the proposed NN model works well in several cases where the observed values are far away

from the monthly median value. The development of ESF prediction model is proposed by McKinnel et al. (2010)

utilizing the artificial neural network (ANN) which is trained using 12 years of range spread-F data (1978 - 1989) from

Fortaleza and Cochaeira Paulista stations in Brazil and the design of NN model consists of seven input parameters

as the geographic latitude, magnetic inclination, magnetic declination, day number, hour number, solar activity (R3),

and magnetic activity (A8). This work indicates that the diurnal, seasonal, and solar cycle variability in spread-F

occurrence is fairly well characterised statistically. Based on previous studies, the several solutions have been proposed

to solve the ionospheric issues posed by the ionosphere through prediction.

Therefore, this study aims to develop spread-F model using the NN algorithm for predicting the percentage of

spread-F occurrences at Chumphon, Thailand. We use the spread-F data from 2013 to 2015 during high solar activity

phase of the 24th solar cycle over the equatorial CPN station (Lat = 10.7◦N , Lon = 99.4◦E) in Thailand. Furthermore,

this study demonstrates the comparison of spread-F NN model with the actual observed spread-F and the evaluation

of IRI-2016 model performance is discussed in terms of servicing the forecast result of spread-F probability during

descending solar activity in 2016 at CPN station.

There are four main sections in this paper. Section 1 discusses the motivation, previous works and objectives in

this work. Section 2 describes the methodology of the designed NN model. Section 3 shows the results and the last

section. Section 4 gives the conclusion.
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2. Methodology

2.1. Data preparation

The spread-F data or target data is scaled from the ionograms of frequency modulation/continuous waves (FM/CW)

ionosonde at CPN station as demonstrated in Fig.1. The measured RSF data covers a four-year period from 2013 to

2016 during the 24th solar cycle with data availability as exhibited in Fig. 2. There are some obtained input data

from the National Oceanic and Atmospheric Administration (NOAA) data center ftp://ftp.swpc.noaa.gov/pub/

warehouse/ including the solar activity (F10.7index) and the magnetic activity (Ap). The parameters of the diurnal

variation and the seasonal variation are generated using the cyclic components of the sine and cosine functions of the

hour and day numbers. In addition, the entire input parameters are scaled into range between -1 and 1resulting in

a better convergence of training the neural network Zhao et al. (2019). The entire prepared inputs are grouped and

arranged appropriately following the target/ESF data format. We choose the three years of data set from 2013 to

2015 for training the NN model, specifically, the training data set is partitioned randomly into the ratio of 70% for

the training set and 30% for the testing set. To validate the network model, the data set of 2016 is assigned as an

unknown data set for testing the designed NN model.

Figure 1: Geogrphical location of FM/CW ionosonde at CPN station.

2.2. Designing the structure of the neural network

The determination of the NN structure influences the desired performance of the designed NN structure and,

furthermore, to overcome the major issues of training the NN model such as overfitting and underfitting. Each designed

NN structure is trained with the primary input parameters consisting of the seasonal variation, diurnal variation, solar

activity (F10.7) index and magnetic activity (Ap) index. The designed network structures are implemented on the

three different networks which consist of a single hidden layer, two hidden layers and three hidden layers. Also, the
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Figure 2: Availability of the spread-F data during 2013 to 2016 at CPN station.

neurons of each designed network are orderly adjusted by 5 interval neurons increasing from 10 neurons to 60 neurons,

respectively. The initial weight values are randomly defined and the training times are repeated by 100 iterations,

the network’s error goal is set to 0.001 and the learning rate of network is 0.003. To evaluate the network model, the

trained network performance is evaluated by the root mean square error (RMSE), i.e.,

RMSE =

√√√√ 1

n

n∑
i=1

(Ppred(i) − Pobs(i))
2
, (1)

where Pobs(i) represents the observed output or the actual output at time i, Ppred(i) is the predicted output of NN

model at time i and n is the total number of the data points.

2.3. Determination of the input parameters

We determine the input parameters depending on its relationships that influence and associate with the equatorial

spread-F phenomenon. Following the numerous input parameters as successfully used in Abdu et al. (2003); McKinnell

& Oyeyemi (2010), we then apply some input parameters such as the diurnal variation, seasonal variation, geographic

latitude, solar activity (F10.7 radio flux) index and the magnetic activity (Ap) index and additionally, we adjust the

F10.7 and Ap indices to the several levels to find the best input parameters. Therefore, in this work, we can optimize

the input parameters as described below.

2.3.1. Diurnal variations

Usually, the occurrence of ESF event is observed only during the post-sunset to the morning. The development of

ESF is caused by recombination of the ionospheric plasma density after sunset and its behaviors are varied following

the diurnal variation. The diurnal variation is a basic factor of interpreting the variability of the ionospheric layer

depending on time variation; it is successfully applied in variety of the space prediction models Watthanasangmechai

et al. (2012); Zhao et al. (2019). Therefore, the diurnal variation is represented by the universal time (UT) from 1

to 24 over CPN station (LT+7). The diurnal variation is generated using the cyclic components of sine and cosine

functions in universal time to give the continuous data as
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HrS = sin

(
2π ∗HrN

24

)
, (2)

and

HrC = cos

(
2π ∗HrN

24

)
, (3)

where HrN is the hour number of universal time (1 - 24).

2.3.2. Seasonal variations

The RSF occurrences are generally found to be higher in the equinoctial months than the solstice months during

minimum solar activity during 2006 to 2013 at CPN region Klinngam et al. (2015). The seasonal variation is thus

used widely to describe the variability of RSF occurrences in each season Oyeyemi et al. (2005); Abdu et al. (2003).

It can be generated by using cyclic components of sine and cosine functions as well as the diurnal variation, i.e.,

DNS = sin

(
2π ∗DN

365

)
, (4)

and

DNC = cos

(
2π ∗DN

365

)
, (5)

where DN is the day number (1 - 365).

2.3.3. Geographic latitude

The ESF occurrence is observed in low latitudinal region more often than the high latitudinal region, particularly,

the area closes to the magnetic equator Rungraengwajiake et al. (2013); Pezzopane et al. (2013); Klinngam et al.

(2015). Therefore, the geographic latitude is considered as an input of space parameters fed to the proposed NN

model. The study area is referred to the geographic latitude of CPN station.

2.3.4. Solar activity (F10.7 index)

The solar activity is an indicator of the ionospheric parameters which can imply numerous irregularities within the

ionospheric layer. Pietrella et al. (2017) study the occurrences of ESF at different longitude sectors under moderate

and high solar activities. Here, we use the F10.7 radio flux index which has been used in the ionospheric prediction

models McKinnell & Oyeyemi (2010); Hu & Zhang (2018). The dataset of F10.7 radio flux index is provided by world

data center (WDC) from National Oceanic and Atmospheric Administration (NOAA) ftp://ftp.swpc.noaa.gov/

pub/warehouse/. In addition, we optimize the F10.7 input in order to minimize the error by averaging the primary

F10.7 index into a window of 15 previous days, 30 days (1 month), 2 months, 3 months, 4 months, 8 months and 12

months (1 year). Each case of the averaged F10.7 value is trained through the three different network models to find

the best performance of F10.7 index.

2.3.5. Magnetic activity (Ap index)

The Ap index is an indicator of the geomagnetic activity based on the recorded Earth’s geomagnetic activity. It is

used to identify the major geomagnetic activity which influences the variations in the ionospheric layer. Stolle et al.

(2006) proposes the relation of magnetic field to ESF using the CHAMP (Challenging Minisatellite Payload) satellite.

The variations of magnetic field are most suitable for the detection of ESF occurrence. The Ap index is used in the
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prediction model of Zhao et al. (2019) to forecast the critical frequency of F2 layer (foF2) in Beijing, China. It is

computed by an 8-point running average of successive 3-hour ap indices during geomagnetic storm. Dataset of Ap

index is derived from data center of NOAA. Therefore, to find the proper value of Ap index to minimize the error, we

define the window size of computing the running average Ap value into different window sizes including the previous

four, eight, sixteen and thirty two 3-hourly values, respectively.

2.4. The description of the proposed NN model

The designed RSF model is based on the defined input parameters with the overall network structure as shown

in Fig. 3. The selection of input spaces is evaluated by the minimum error or the best performance of the forecaster

model. The basic functionality of this proposed NN model can be written in a function form of the space parameters

that are composed of the diurnal variation (HrS and HrC), seasonal variation (DNS and DNC), geographic latitude

(Lat), solar index (F10.7(4)) and magnetic index (Ap(8)), i.e.,

SpreadFModel = f (HrS,HrC,DNS,DNC,Lat, F10.7(4), Ap(8)) , (6)

where F10.7(4) is an averaged F10.7 value which is taken over the period of the previous four months, Ap(8) is an

averaged Ap value of the previous eight 3-hourly values. Therefore, these inputs are normalized and fed to the NN

model. The proposed NN model applies a feed-forward network Haykin (2008) and its learning is trained by using the

feedback error of the back propagation algorithm of Levenberg-Marchquardt which is referred to be the fast learning

algorithm Kisi & Uncuoglu (2005). The responses after training are passed through the threshold to make a decision

of RSF presence or RSF absence. Finally, the results are analyzed in terms of the percentage of RSF occurrence, i.e.,

%ESFt =

∑N
i=1ESFt,i

N
× 100, (7)

where %ESFt is the percentage of spread-F occurrence at time t, N represents the number of observed days and

ESFt,i is the ESF occurrences at time t and day i.

2.5. The ESF probability of IRI-2016 model

The ESF probability has been included in the IRI model in 2003 under a regional model of Brazil longitude sector

Abdu et al. (2003). The dataset covers 13-years period from 1978-1990 over the equatorial site Fortaleza (3.9◦ S,

38.45◦ W, dip angle: -9◦) and coordinates of Cachoeira Paulista (22.6◦ S, 315◦ W, dip angle: -28◦) is utilized to build

this model. The model produces the prediction of spread-F occurrence in monthly percentage. Furthermore, the input

parameters consist of the local time, latitude, season/month and the solar flux value, these inputs are fitted by the

method of a cubic-B spline. The spread-F probability P can be shortly expressed as

P (t,m, F, φ) =

23∑
i=1

12∑
j=1

3∑
k=1

2∑
l=1

ai,j,k,lNi,4(m)Nj,2(m)Nk,2(F )Nl,2(φ), (8)

where t is the local time, m is the seasonal variations, F represents the solar flux and φ is the latitude dependence. In

addition, Ni,4(t) is a cubic-B spline of order four which is applied to local time dependence, Ni,2(m), Nk,2(F ), Ni,2(φ)

are cubic-B splines of order two which are assigned to season, solar flux and latitude, respectively, and ai,j,k,l are the

monthly mean of the spread-F occurrence.
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Figure 3: Schematic diagram of the proposed neural network model for spread-F prediction.

3. Results and discussions

3.1. The RMSE in relation to the network structure and input parameters

In this work, we utilize the RSF dataset during 2013 to 2015 for training and designing the network structure with

the input parameters as illustrated in Fig. 3. The graphs in Fig. 4(a) exhibit the RMSE of the designed network

structure with single, two and three hidden layers, respectively. We obtain the NN structure with three hidden layers

with 45 neurons which produces the minimum RMSE at 0.185. In addition, the two increase values of RMSE occur

at three hidden layers with 45 and 50 neurons as depicted in Fig.4(a) However, these two rapid increase cases are

due to the initial selected number of the neurons sizes but they do not affect the optimal number of neuron size as

demonstrated in Fig. 4(a). Fig. 4(b) and (c) show the derived RMSE of the designed NN models with different

running mean values of Ap and F10.7 indices. The lowest RMSE of the NN model (0.227) occurs when the averaged

Ap value of the previous eight 3-hourly value Ap(8) is used as shown in Fig. 4(b). On the other hand, the minimum

RMSE (0.206) occurs when the averaged F10.7 value of the four previous months F10.7(4) is used as illustrated in

Fig. 4(c). As a result, these two inputs are determined as network inputs together with the seasonal variation (DNS

and DNC), diurnal variation (HrS and HrC), and the geographic latitude (Lat).

3.2. The performance of proposed NN model after training

Figure 5 shows the confusion matrix of the proposed NN model after training with the dataset from 2013 to 2015.

The confusion matrix yields the informative details of how the proposed NN model learns to classify or predict the

outputs with respect to the target classes. Based on the design of NN model, there are two target classes and also

the outputs consist of two classes with respect to target classes, namely, the class 1 and 2 representing RSF presence

and RSF absence, respectively. The proposed NN model is trained with 78,153 data samples which are randomly

partitioned into ratio of 70% and 30% for the training. The output of class 1 represents the case of RSF presence;

the correct classification of the proposed NN model is 7.6% against 0.5% of wrong classification regarding to all of the
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Figure 4: The RMSE performances of the NN models during training as a function of (a)

the number of neurons (b) the Ap index and (c) the F10.7 index.
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78,153 data samples. In addition, out of the 6,348 samples of prediction of RSF presence, 93.7% is correct and 6.3%

is wrong. The case of RSF absence is represented by the output class 2; the 90.7% of the RSF absences is derived as

correct prediction and 1.2% is for the incorrect classification. In total, the classification of the 71,805 samples of the

RSF absences is 98.7% correct prediction and 1.3% incorrect prediction. On the other hand, the amount of the 6,877

samples of the target class 1(left column), the proposed NN model produces the 86.4% of the correct classification

as the RSF occurrences and 13.6% belongs to the RSF absence. For the 71,267 samples in the target class 2(middle

column), the proposed NN model predicts 99.4% spread-F absence and 0.6% RSF presence (or wrong classification).

Overall, the learning of the proposed NN model achieves the 98.3% correct and 1.7% wrong classifications.

Figure 5: The confusion matrix of the proposed NN model (after training).

3.3. Comparison of the predicted results with the actual observed results in 2016

The comparison between the actual observed RSF and the predicted RSF using the designed NN model in 2016

are analyzed by the percentage of RSF occurrences following Fig. 6. The characteristic of RSF occurrences can be

seen clearly in each month, particularly, the percentage of RSF occurrences mostly appears in the equinoctial months

more than solstice months Klinngam et al. (2015). In addition, the prediction of proposed NN model produces both

the overestimation and underestimation that do not differ much from the actual observed results in each month. The

proposed NN model underestimates the RSF occurrences in March, April, June and July by about 4.3%, 10.2%, 10.6%

and 4.4% of averaged values, respectively. Note that in November and December, there is no RSF occurrence due to the

missing data and its particular characteristic in solstices are shown in Fig. 2, however, the proposed NN model could

predict the RSF occurrences which are very close to the actual values. The largest overestimations of the proposed

NN model are 0.3% to 2.5% in January, May, August, October, November, and December. Totally, the prediction of
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the proposed NN model provides the lower overestimated results than the underestimated results. The percentage of

predicted RSF probability from the proposed NN model is under 10.6% of the average deviation when compared with

the actual observed RSF probability.

3.4. Evaluation of the IRI-2016 model performance through the comparison

Figure 7 shows the comparison of RSF probability of the IRI-2016 with the observation and the proposed NN

model during 2016 over CPN station. As a result, the estimated results of IRI-2016 model has a particular trend in

each month. We notice that the IRI model produces the predicted results which are higher than the observed results

in all months during 18:00LT to 21:00LT and the IRI-2016 model overestimates the RSF probability in several months

including January, February, March, September, October, November and December, by 12.7%, 5.8%, 8%, 6.8% and

6.9% of the averaged values, respectively. Therefore, those results imply that the most predictions of IRI model are

higher than the results of the proposed NN model, particularly during the equinoctial months and in some solstice

months, except in May, June, July where it has lower estimation than the proposed NN model and the observation

is depicted in Fig. 7. The low percentages of RSF occurrence are observed to be about 0.4%, 4%, and 4.6% of the

averaged values during June solstices, respectively. The IRI model underestimates the RSF probability which is lower

than the actual observation even though the real observed value is very low during 22:00LT to 07:00LT. The low RSF

probability of June solstices falls into the same case like December solstices including November and December, hence,

this case is possibly due to the missing data and the particular feature of the solstice season. Therefore, depending on

accuracy of IRI model is performed, we expect that the causes are from the dataset which uncovers CPN region and

in addition, the differences in geographical location is also probably the difficulties of IRI model to forecast the RSF

probability over CPN region.

4. Conclusions

In this work, the proposed NN model is designed and tested for spread-F at CPN station, Thailand. It achieves

98.3% accuracy after training with the available data which covers the four-year period from 2013 to 2015 during high

solar activity of 24th solar cycle. The proposed NN model provides the best performance with three hidden layers

containing 45 neurons in each layer. The Ap and F10.7 indices can minimize the errors of the proposed NN model by

utilizing the previous averaged values of the eight 3-hourly values of Ap (Ap(8)) and the four previous months of the

averaged F10.7 values (F10.7(4)). The results demonstrate that the prediction of proposed NN model could forecast

the RSF probability in solstice months more accurately than equinoctial months over CPN station. In addition, the

validation of the IRI-2016 model shows clearly that the IRI model still overestimates the RSF probability in the

equinoctial months and December solstices in 2016 over CPN station.

Development of the spread-F predictive model is still a challenging work in terms of the data limitation for training

the model. In future works, we will increase the amount of the training dataset and add the new input parameters such

as the virtual height of F layer (h′F ) Wang et al. (2018), the velocity drift of F bottom side region, the rate of total

electron content (ROTI) or gravity wave Manju et al. (2016) and the plasma vertical drift Huang (2018). Moreover,

the another learning technique of the machine learning, deep learning and reinforcement learning can be used.
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Figure 6: Comparison between of the actual observed spread-F with the predicted result of the proposed spread-F model in each month of

2016 at CPN station.

12



5. Acknowledgments

This work is supported by King Mongkut’s Institute of Technology Ladkrabang under the grant #KDS2019/016.

We thank NICT, Japan, and NOAA for supporting the research equipment and the data.

References

Abdu, M. (2001). Outstanding problems in the equatorial ionosphere-thermosphere system relevant to spread-

F. Journal of Atmospheric and Solar-Terrestrial Physics, 63(9), 869–884. URL: https://doi.org/10.1016/

S1364-6826(00)00201-7.

Abdu, M., Kherani, E., Batista, I., de Paula, E., Fritts, D., & Sobral, J. (2009). Gravity wave initiation of equatorial

spread F/plasma bubble irregularities based on observational data from the spreadfex campaign. Ann. Geophys,

27 , 2607–2622. URL: https://doi.org/10.5194/angeo-27-2607-2009.

Abdu, M., Souza, J., Batista, I., & Sobral, J. (2003). Equatorial spread F statistics and empirical representation

for IRI: A regional model for the brazilian longitude sector. Advances in Space Research, 31 , 703–716. URL:

https://doi.org/10.1016/S0273-1177(03)00031-0.

Abdu, M., Souza, J. D., Kherani, E., Batista, I., MacDougall, J., & Sobral, J. (2015). Wave structure and polarization

electric field development in the bottomside F layer leading to postsunset equtorial spread F. J. Geophys. Res. Space

Physics, 120 , 6930–6940. URL: https://doi.org/10.1002/2015JA021235.

Basu, S., Aarons, J., McClure, J., & Cousins, M. (1978). On the coexistence of kilometer and meter-scale irregularities

in the nighttime equatorial F region. Journal of Geophysical Research, 83 , 4219 – 4226. URL: https://doi.org/

10.1029/JA083iA09p04219.

Booker, H., & Wells, H. (1938). Scattering of radio waves in the F-region of the ionosphere. Journal of Geographical

Research, 43 , 249–256. URL: https://doi.org/10.1029/TE043i003p00249.

Haykin, S. (2008). Neural Networks and Learning Machines, Third Edition. PEARSON.

Hoang, T. L., Abdu, M., MacDougall, J., & Batista, I. (2010). Longitudinal differences in the equatorial spread F

characteristics between vietnam and brazil. Advances in Space Research, 45 , 351 – 360. URL: https://doi.org/

10.1016/j.asr.2009.08.019.

Hu, A., & Zhang, K. (2018). Using bidirectional long short-term memory method for the height of f2 peak forecasting

from ionosonde measurements in the australian region. Remote Sens, 10 , 49–53. URL: https://doi.org/10.3390/

rs10101658.

Huang, C. S. (2018). Effects of the postsunset vertical plasma drift on the generation of equatorial spread F. Progress

in Earth and Planetary Science, 5 , 1–15. URL: https://doi.org/10.1186/s40645-017-0155-4.
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